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We Have an Interdisciplinary Team

• Graham Thomas - ENG/MMED
- Project Management
- NDE, materials characterization

• Chris Robbins - ENG/NSED
- Program Management
- Data acquisition, hardware, signal processing software, NDE

• Grace Clark - ENG/NSED
- Image/signal processing, target/pattern recognition,

sensor data fusion, NDE

• Katherine Wade - ENG/NSED
- Signal processing software and testing

• Paul Sousa - ENG
- Laboratory technician, data acquisition
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Agenda

• Introduction
- The Cable Damage Detection Problem
- This is work in progress

• Technical Approach - Model-Based Damage Detection

• Damage Detection Processing Results
- Real Measurements, Artificial Damage - Reported Earlier
- Real measurements, real damage
- Performance Measurements

- ROC Curves, Confidence Intervals

• Discussion and Plans
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We Are Testing Two-Conductor Flat Cables
With Kapton Insulation - For Dielectric Anomalies

Two-Conductor Flat Cable
With Kapton Insulation

Foil Simulating a Capacitive
Discontinuity (Damage)

Red TDR Signal => Good Cable
Black TDR Signal => Damaged Cable

Foil (Damage)

No Foil
(No Damage)

Kapton 

Kapton
Dielectric 

KaptonAdhesive
Copper foil

Copper foil

 Expected Damage Types:
-Compressions

-Punctures
- Short Circuits
- Open Circuits
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The Key Hardware Component is the
Pulse Insersion Unit (PIU) Grace Clark

Pulse 
Generator

50 ps Rise Time

Filter
Impulse
Forming
Network

100 ps Rise Time

0

-9v

t

Cable Under Test

Load

Pulse Insertion Unit (PIU)

Capacitive Coupling & Impedance Matching:
• PIU     = Half of “The Capacitor”
• Cable = Half of “The Capacitor”

Scope

Scope Triggers the Pulse Generator

-2.9v

! 

50"

! 

3"

Pulse Inserted Into Cable

PIU
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The Technical Challenges/Issues are Difficult,
But We Do Not Know Yet Exactly How Difficult

• We have access to only one end of the cable

• We cannot “Hi-Pot” the cables in place

• We have no exemplars of “real” damaged cables
- We must “insult” them artificially

• We have no archive signals from the cables “As-Built”
- Only a “typical” signal for an undamaged cable

• Small sample size
- Small number of available cables for “insulting” (~ 60)
- Obviates using supervised learning pattern recognition algorithms
- Makes it difficult to create ensembles for building ROC curves

• Repeatability of Measurements (A VERY IMPORTANT ISSUE)
- Single cable - Test to test [Apparently solved to first order]
- Cable to cable  [Solved after lots of hard work]

• The signal shape changes significantly with the cable environment
- We have 2D and 3D “Mockups”
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Repeatability: Use a Confidence Interval About the Mean
[Small Sample Size Case (M < 30)]

If the test statistic         is Gaussian distributed,
then the 95% confidence interval estimate of the test statistic for 
small sample size (M < 30) is:            
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“With confidence 95%, the test statistic lies between the
lower bound and the upper bound.”

Note: b is a constant that depends on the sample size M.
For M < 30, choose b from a “Student’s t table.”

Note: For this case, we must use the Student’s t distribution 
to compute the bounds.  
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We Plot the Ensemble Sample Mean Signal
and its Confidence Interval Bounds about the Mean

    • Let         Fraction of samples of mean that exceed the threshold 
    • If              , Declare  Signal Ensemble is repeatable
    • If              , Declare Signal Ensemble is not repeatable
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Step #1: System Identification to Estimate the
Dynamic Model of the Undamaged Cable
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(Reference
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Undamaged
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Step1 (System ID) is Done “Offline”
Step2 (Damage Testing) is Done “Online”

Pre-
Processing:

• Cutting
• Mean/Trend

Removal
• Decimation

System
Identification

(Model-
Building)

Whiteness
Test

WSSR
Test

Step1 (System ID)

Step2 (Damage Testing)

“Undamaged” Innovations

Whiteness
Test

(Optional)

WSSR
Test

+
+

-

“Damaged” Innovations
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The Form of the Linear System Model Used is “ARX”
= “Auto-Regressive with Exogenous Input”

The model parameters are estimated using a least squares algorithm:
- Solve an over-determined set of linear equations
- Solve using QR factorization algorithm
- The regression matrix is formed so that only measured quantities

are used (no fill-out with zeros).
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Scalar WSSR (Weighted Sum Squared Residuals) Test
For a Scalar Measurement (p = 1)

We define the scalar WSSR test statistic at time index n: 

Note: We estimate WSSR over a finite sliding window of length W samples.
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Scalar WSSR is Calculated Using a Sliding Window
Over the Innovations Sequence
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WSSR is a useful test statistic for detecting an abrupt
change, or “jump” in the innovations

WSSR = “Weighted Sum Squared Residuals”
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The Scalar WSSR Confidence Interval Threshold is
Parameterized by the Window Length W

Summary of the WSSR Test for Significance             :
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               In practice, we implement the WSSR test as follows:
    • Let         Fraction of samples of            that exceed the threshold 
    • If              , Declare H0 is true  (innovations are white, no jump)
    • If              , Declare H1 is true  (innovations are not white, jump) 
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We Acquired an Ensemble of Real Signals for Processing
The PIU was never disconnected between acquisitions               Experiment E1:  Data from 2_13_07

UNDAMAGED
     Reference Signals (Undamaged):

refa, refb, refc

MINOR DAMAGE
     Minor Damage (pin hole, knife present, no short):

minor1a, minor1b, minor1c

     Minor Damage (pin hole, knife removed, no short):
minor2a, minor2b, minor2c

     Minor Damage (pin hole, knife removed,
cable rubbed to remove short):

minor3a, minor3b, minor3c

MAJOR DAMAGE
     Major Damage (pin hole, knife removed,

conductors shorted):
major1a,  major1b,  major1c
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Experiment 1:
System Identification Results

Grace A. Clark
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E1_s_xu_xdC.pdf

System Identification: Preprocessed Signals
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Major
Damage



19Option: LLNL-CONF-408841, LLNL-ABS-407974
Grace A. Clark, Ph.D.

Lawrence Livermore National Laboratory

System Identification:  The Model Fit is Good
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E1_Ree_Rxy1C.pdf

System Identification: Correlation Tests are Satisfactory
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E1_WT_euC.pdf

System Identification Whiteness Test Result = White
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E1_WSSR_eu(61)C.pdf

System Identification WSSR Test Result = No Model Mismatch!
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Experiment 1:
“Minor3” Damage

Grace A. Clark
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E1_xd_m3a_xuC.pdf
“Minor3 Damage”:  Damage Is Difficult to Distinguish Visually
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E1_ed_m3a_xuC.pdf

Minor3 Damage: The  Innovations are Small, But Correlated
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E1_WSSR_ed_m3a_(61)C.pdf

“Minor3 Damage” WSSR Result = Model Mismatch!

W = 61
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Minor3a,b,c Damage
Receiver Operating Characteristic (ROC) Curve = Ideal

W          PFA             PD

! 

ˆ P 
CC

=
1

2
P

D
+ 1" P

FA( ){ }

     =1

! 

P .6 " P
CC

" 1.0{ } = .95

Choose the Operating Point:

W* = 60,61

Estimated Probability Of Correct
Classification at W* is:

95% Confidence Interval on PCC is:

Probability of Detection vs. Probability of False Alarm

PD

PFA



Lawrence Livermore National Laboratory

Experiment 5b:
Obvious Damage

Grace A. Clark
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Exp. (1)E5b:  Obvious Damage
Cut 30% of Conductor Width, 14 in from connector, cable shorted

Blue = TDR Signal Before Damage

Red = TDR Signal After Damage
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Exp. (1)E5b:  Obvious Damage, ROC Curve is Ideal
Cut 30% of Conductor Width, 14 in from connector, cable shorted

W = 92
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Exp. (1)E5b:  Obvious Damage, Confidence Interval on P(CC)
Cut 30% of Conductor Width, 14 in from connector, cable shorted

Estimated P(CC) from Contingency Table
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Conclusions & Future Work

Future Work:
• Cable “Insult Studies” with more damage types
• Tune the adjustable algorithm parameters for best performance

- Interpolation factors, significance of tests, etc.
• Experiments in realistic cable environments - 3D Mockup
• Use algorithms with other applications - Other systems, optical cables

• Tests with real data validate the algorithms:
- Earlier tests with cables on a work bench

- Cable not removed between measurements
- Recent tests with cables in the 2D mockup fixture

- Cable removed between measurements
- Can sometimes detect damage that is not obvious by visual inspection

• The most difficult issues have been:
- Repeatability of the TDR measurements in the 2D fixture

Extensive work was required to achieve repeatability


